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Escherichia coli O157:H7 genotypes in the bovine reservoir may differ in virulence. The proportion of clinical
genotypes among cattle isolates was weakly (P � 0.054) related to the international incidence of E. coli
O157:H7-associated hemolytic-uremic syndrome, varied among clinical isolates internationally, and also dif-
fered along the putative cattle-hamburger-clinical case transmission chain.

Infection with enterohemorrhagic Escherichia coli serotypes
O157:H7 and O157:H� (EHEC-O157) may cause diarrhea,
hemorrhagic colitis, and hemolytic uremic syndrome (HUS)
(13, 24). Cattle are considered the principal reservoir of EHEC
(18). EHEC-O157 typically produces Shiga toxins Stx1 and/or
Stx2, encoded by lambdoid bacteriophages (23, 28, 34). In
EHEC-O157 strains EDL933 and Sakai, Stx-encoding phages
are inserted in yehV and wrbA (19, 40). Shaikh and Tarr (44),
however, demonstrated insertion site diversity in Stx-encoding
bacteriophages among clinical EHEC-O157 isolates, defining
three predominant clinical genotypes (genotypes 1 to 3). Sub-
sequently, the predominance of genotypes 1 to 3 among a
larger set of U.S. human clinical isolates was confirmed; in
contrast, considerable additional diversity of Stx-encoding bac-
teriophage insertion sites was demonstrated in isolates from
the bovine reservoir (6). Since nonclinical genotypes repre-
sented almost half of the bovine isolates, broad exposure of the
human population to these genotypes would be expected.

The frequency of reported EHEC-O157-associated disease
varies markedly internationally. For example, the incidence of
EHEC-O157 (infections/100,000 population annually) was re-
ported as 4.1 (Scotland, 2004), 0.9 (United States, 2004), 0.87
(Japan, 2004), 0.13 and 1.6 (Germany, 2004 and 1997 to 2003,
respectively), 0.11 (Republic of Korea, 2003), and 0.08
(Australia, 2004) (2, 9, 14, 15, 27, 31, 38). HUS, an uncom-
mon sequel to EHEC-O157 infection, may be less under-
reported due to its severity (32). The corresponding inci-
dence of EHEC-O157-associated HUS was 0.41 (Scotland),
0.1 (United States), 0.002 to 0.20 (Germany), 0.05 (Republic

of Korea), and 0.01 (Japan and Australia) (1, 2, 10, 14, 15,
20, 37).

To determine whether the proportion of EHEC-O157 ge-
notypes in the bovine reservoirs influences the rates of the
diverse international incidence of EHEC-O157 disease, we
genotyped EHEC-O157 isolates obtained from cattle in sev-
eral countries. Study isolates included non-sorbitol-ferment-
ing, �-glucuronidase-negative EHEC-O157 isolates from cattle
originating from different farms in geographically disseminated
locations within the United States (1994 to 2002), Australia
(1993 to 2003), Japan (1996 to 1997; provided by Masato
Akiba, National Institute of Animal Health, Tsukuba, Ibaraki,
Japan), Scotland (1999; provided by Barti Synge, Scottish Ag-
ricultural College, Inverness, United Kingdom), and Korea
(1997; provided by B. Young).

Genotypes of EHEC-O157 isolates were determined by us-
ing a multiplexed variation of a PCR method previously de-
scribed (6, 44). Multiplex 1 included stx1 (36), the right wrbA-
bacteriophage junction, and the left yehV-bacteriophage
junction. Multiplex 2 included stx2 (39), the left wrbA-bacte-
riophage junction, and the right yehV-bacteriophage junction.
EHEC-O157 cells were grown overnight at 37°C in LB broth
with shaking and diluted 1:10 with water for use as a whole-cell
template. The 50-�l reaction mixtures included 2.5 U/�l Taq
polymerase, 2 mM MgCl2, 0.4 mM deoxynucleoside triphos-
phates, 5 �l 10� buffer (Invitrogen, Carlsbad, CA), and 2 �l of
the whole-cell template. Thermocycler (iCycler; Bio-Rad, Her-
cules, CA) parameters included one 95°C (5 min) cycle and 35
cycles at 94°C (30 s), 58°C (45 s), and 72°C (90 s), followed by
a final 72°C (10 min) cycle. The assignment of genotypes was
based on the presence or absence of the six PCR products (6).
Controls included E. coli DH5� (negative control) and
EDL933 (positive control).

No significant association was observed between the propor-
tion of clinical genotypes among isolates from the international
bovine reservoirs and the respective international incidences of
EHEC-O157 disease (rs [Spearman’s rho statistic] � 0.50, P �
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0.39) (Table 1). In contrast, the correlation between the pro-
portion of clinical genotypes in the bovine reservoirs and the
respective international incidences of HUS approached statis-
tical significance (rs � 0.87, P � 0.054). Isolates from Scottish
cattle had the highest proportion of clinical genotypes 1 to 3

(56%) (Fig. 1), but the relative numbers of clinical genotypes
in cattle isolates in the United States (38%), Korea (45%),
Australia (37%), Japan (36%), and Scotland did not differ (�2 �
5.1; 4 df; P � 0.28). Therefore, the effect of EHEC-O157
genotypes would appear to be limited to, at most, the more-
severe disease manifestation of HUS. Even for HUS, the ob-
served 	2-fold difference in the proportions of clinical geno-
types in isolates from the bovine reservoir is far smaller than
the 40-fold difference in the reported incidences of EHEC-
O157-associated HUS, suggesting that other factors must ac-
count for most of the international differences. Such factors
may include differences in the magnitudes of shedding of
EHEC-O157 for specific genotypes or differing international
prevalences of EHEC-O157 shedding by cattle. Reports of
bovine prevalence vary widely, both within and between coun-
tries, in part as a result of different sampling, culture, and
isolation methods used for EHEC-O157 detection (11, 12, 16,
21, 22, 30, 33, 35, 42, 43, 45). International comparisons of the
prevalence of cattle infection, the magnitudes of cattle fecal
shedding, and the frequency of contamination of human food
and water sources using standardized methods and sampling
frames, in conjunction with genotype determinations of the
isolates in those sources, would be required to more accurately
address the effects of the EHEC-O157 genotypes present in
bovine reservoirs on the incidence of human disease.

TABLE 1. Genotypes of Stx-encoding bacteriophage insertion sites from an international group of clinical, bovine, and environmental
isolates of EHEC-O157

Genotypea

Presence
or

absence
of PCR

productsb

No. (%)e of isolates from indicated country and source:

Australia Japan Germany Korea Scotland United Statesd

Bovine Human Bovine Human Humanc Human Bovine Bovine Bovine Beef Human Sewage

1 011100 21 (35.0)e 3 (20.0) 8 (18.2) 1 (20.0) 0 (0) 21 (72.4) 4 (12.9) 22 (56.4) 22 (15.3) 18 (17.5) 39 (26.4) 8 (66.7)
2 011111 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (3.4) 2 (6.5) 0 (0) 2 (1.4) 5 (4.9) 4 (2.7) 0 (0)
3 111111 2 (3.3) 4 (26.7) 8 (18.2) 2 (40.0) 0 (0) 0 (0) 8 (25.8) 0 (0) 31 (21.5) 35 (34) 82 (55.4) 0 (0)
4 010011 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 3 (2.1) 0 (0) 1 (0.7) 0 (0)
5 011000 2 (3.3) 2 (13.3) 14 (31.8) 1 (20.0) 0 (0) 4 (13.8) 8 (25.8) 2 (5.1) 46 (31.9) 10 (9.7) 4 (2.7) 1 (8.3)
6 111000 15 (25.0) 2 (13.3) 3 (6.8) 0 (0) 0 (0) 0 (0) 0 (0) 7 (17.9) 31 (21.5) 10 (9.7) 3 (2.0) 0 (0)
7 111011 0 (0) 0 (0) 1 (2.3) 1 (20.0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0.7) 0 (0) 1 (0.7) 0 (0)
8 101100 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 3 (9.7) 0 (0) 0 (0) 3 (2.9) 2 (1.4) 0 (0)
9 000000 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (3.2) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
10 001100 0 (0) 0 (0) 1 (2.3) 0 (0) 0 (0) 0 (0) 1 (3.2) 3 (7.7) 1 (0.7) 2 (1.9) 1 (0.7) 2 (16.7)
11 010000 0 (0) 0 (0) 0 (0) 0 (0) 29 (100) 1 (3.4) 1 (3.2) 0 (0) 0 (0) 1 (1) 1 (0.7) 0 (0)
12 011011 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 1 (0.7) 0 (0)
13 101000 1 (1.7) 2 (13.3) 2 (4.5) 0 (0) 0 (0) 0 (0) 0 (0) 3 (7.7) 1 (0.7) 1 (1) 2 (1.4) 0 (0)
14 101011 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
15 110000 5 (8.3) 2 (13.3) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (1.4) 1 (1) 0 (0) 0 (0)
16 111100 12 (20.0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (6.9) 1 (3.2) 0 (0) 3 (2.1) 8 (7.8) 4 (2.7) 0 (0)
17 001000 0 (0) 0 (0) 1 (2.3) 0 (0) 0 (0) 0 (0) 2 (6.5) 2 (5.1) 0 (0) 0 (0) 0 (0) 0 (0)
18 111101 0 (0) 0 (0) 6 (13.6) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (1.9) 1 (0.7) 0 (0)
19 010100 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 4 (3.9) 0 (0) 1 (8.3)
20 100000 2 (3.3) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0.7) 0 (0)
21 011101 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (1.9) 0 (0) 0 (0)
22 101111 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0.7) 0 (0)
23 111110 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0.7) 0 (0) 0 (0) 0 (0)

Total 60 15 44 5 29 29 31 39 144 103 148 12

a Genotypes 1 to 3 (clusters 1 to 3) (44) and 4 to 16 (6).
b Presence or absence of PCR products for stx1, stx2, yehV-left, yehV-right, wrbA-left, and wrbA-right shown in concatenated code. 1, present; 0, absent.
c Sorbitol-fermenting, �-glucuronidase-positive EHEC-O157:H�; all other columns are for non-sorbitol-fermenting, �-glucuronidase-negative Escherichia coli

O157:H7.
d Beef, retail ground beef; sewage, untreated municipal sewage.
e Percentage of total number of isolates for the column.

FIG. 1. The proportion of bovine isolates with clinical genotypes
(genotypes 1 to 3, unfilled bars) among isolates from cattle in the
specified countries and the incidence (cases per 100,000 population,
filled bars) of EHEC-O157 HUS are shown. Error bars indicate 95%
confidence intervals.
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Where available to us, we also analyzed clinical EHEC-O157
isolates to determine if the relative prevalences of clinical
genotypes are similar internationally. Clinical isolates were
obtained from the United States (2004 to 2005; Washington
Department of Health), Japan (1995 to 1996; M. Akiba), Aus-
tralia (1986 to 1999; R. Robins-Browne and D. Lightfoot, Uni-
versity of Melbourne, Parkville, Victoria, Australia), and
Germany (DNA from both sorbitol-fermenting and non-sorbitol-
fermenting isolates; Martina Bielaszewska, University of
Münster, Münster, Germany). Since DNA from all of the sor-
bitol-fermenting, ß-glucuronidase-positive EHEC-O157 Ger-
man isolates were negative for all Stx insertion site genotyping
markers except stx2, consistent with its status as a distinct clade
of EHEC-O157, the following analyses of genotypes were lim-
ited to isolates of the non-sorbitol-fermenting clade.

The proportions of clinical genotypes differed significantly
among clinical isolates obtained from different countries (�2 �
13.7; 3 df; P 
 0.005), including 84% (United States), 76%
(Germany), 60% (Japan), and 47% (Australia). With Bonfer-
roni’s correction, pairwise analyses demonstrated that the pro-
portions of clinical genotypes among clinical isolates differed
significantly between the United States and Australia only
(P 
 0.02).

Lastly, we compared genotypes of EHEC-O157 strate iso-
lated from along the putative transmission chain from cattle,
retail ground beef, clinically ill humans, and untreated sewage.
Ground beef isolates were provided by Marcus Head, United
States Department of Agriculture Food Safety and Inspection
Service, Athens, Georgia. Additional isolates were obtained
from untreated sewage at two municipal sewage treatment
facilities in Washington State in 2006. The proportions of clin-
ical genotypes were significantly higher among clinical isolates
than from cattle or ground beef specimens (P 
 0.01) (Fig. 2),
but surprisingly different proportions of clinical genotypes
were observed in isolates from cattle feces and from retail
ground beef specimens (�2 � 7.9; 1 df; P 
 0.01) (Table 1 and
Fig. 1 and 2), with relatively more genotype 3 isolates, and
smaller amounts of genotype 5 and 6 isolates from ground beef
than from cattle feces. These differences may be due to differ-
ential fitness among some genotypes, such as higher shedding

levels in cattle feces, increased ability to survive processing and
persist on hamburger and other food products, or other similar
traits. Strain-specific differences in survival on beef or in media
(3, 4, 5, 7, 41) have been reported, some in the opposite
direction (4) from the tendency to explain the differences in
genotypes reported here.

Differences in EHEC-O157 genotypes among clinical and
bovine reservoir isolates have been previously reported, includ-
ing those detected by Octamer Based Genomic Scanning
(OBGS; lineage I versus lineage II), with the bacteriophage
antiterminator allele Q933 (presence versus absence) and a
polymorphism in tir (255 T versus A), and by phage typing
(21/28 versus others from Scotland) (8, 17, 25, 26, 29, 31).
Some of these genotypes may be correlated; for example, both
Stx insertion typing and OBGS classify most Australian isolates
into genotypes less associated with clinical disease (lineage II
and nonclinical genotypes, respectively). The biologic basis of
the differential representation of these genotypes in cattle and
in human disease remains largely unexplained.

In summary, while the proportion of clinical genotypes in the
bovine reservoir tended to correlate with the incidence of HUS
in human populations, this tendency was too weak to provide
a satisfying explanation for the magnitude of the differences in
the international incidences of HUS and other EHEC-O157-
related diseases. Assuming that the incidence estimates for
EHEC-O157 disease are accurate, then other factors, such as
the prevalence of EHEC-O157 in cattle, genotype-related dif-
ferences in fecal shedding by cattle, survival in food products
and environmental niches, and infectivity and virulence, as well
as differences in food preparation practices and dietary com-
position, may contribute significantly to the differing interna-
tional incidences of EHEC-O157 disease.
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